5th Meeting

SOIL CHEMICAL PROPERTIES

Part II

By Dr. Sumihar Hutapea, MS/ Indah Apriliya, SP, M.Si

Chemical Properties of Soil

01

02

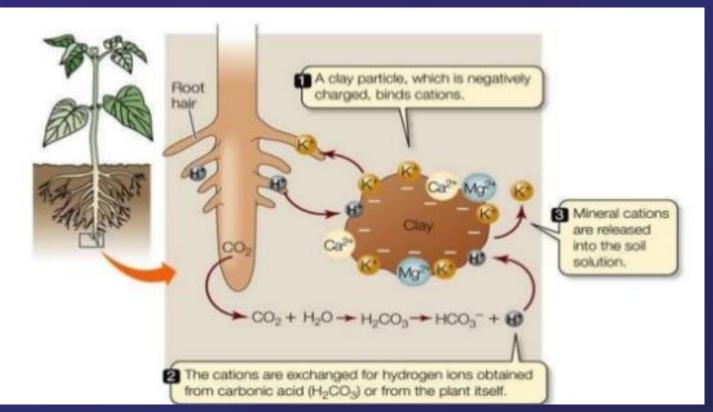
03

Plant Nutrients

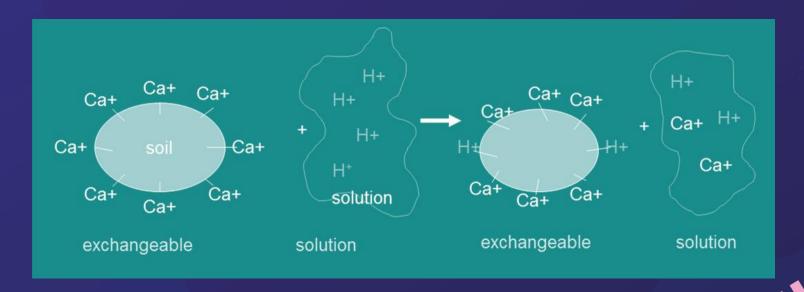
Soil pH

Cation Exchange Capacity

04


Base Percentage Saturation

05


Soil Colloid Properties

Review

Cation Exchange Capacity (CEC)

Ion exchange example: Add H+ ions to soil:

Energy of adsorption

Strong ------Weak

$$Al^{+3} > Ca^{+2} > Mg^{+2} > [K^{+} = NH_4^{+}] > Na^{+} > H^{+}$$

(based on charge and hydrated radius)

Base Percentage Saturation

- There are acid-forming cations (hydrogen and aluminum) and there are base-forming cations (calcium, magnesium, pottasium, and sodium)
- Base saturation is the fraction of exchangeable cations that are base cations.
- It is expressed as percentage and hence the name percentage base saturation

Base Percentage Saturation

 $Percentage\ base\ saturation = \frac{exchangeable\ base}{CEC\ of\ the\ soil} x100\%$

Soil Colloids

- Definition: are very small organic and inorganic parties present in the soil which are responsible for potential fertility of the soil determine the physical and chemical properties of the soil
- Some of the many types :
 - Layer silicate clays
 - Iron and Aluminum oxide clays
 - Alophane and associated amorphous clays
 - Organic soil colloid : humus

Layer Silicate Clays

Si-Tetrahedron

→ A unit composed of one silicon atom surrounded by four oxygen atoms

Eg: Olivine

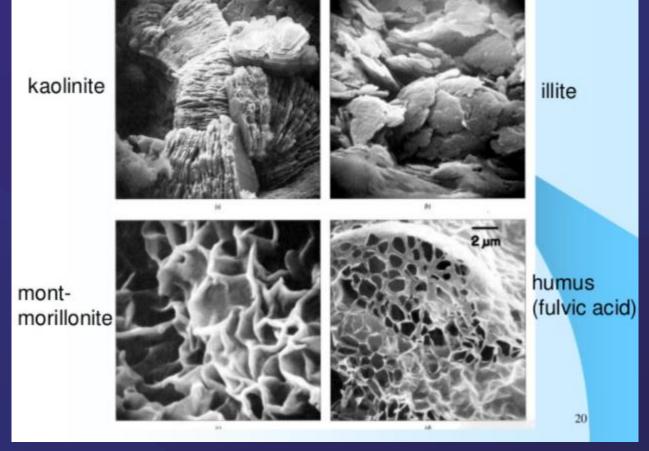
Al-Octahedron

The key cations surrounded by six oxygen atoms or hydroxyl group giving an eight sided building block termed octahedron

....(Cont) Layer Silicate Clays

- Type 1:1 → Strong bond, good physical properties but have limiting holding capacity for nutrients. Eg: Kaolinite.
- Type 2:1 → Shrinking and swelling constantly. Poor physical characteristics, but rich in nutrients. Eg: Montmorillonite, illite, and vermiculite.
- Type 2 : 2 → Strong bond, good physical properties.
 Eg : Chlorite

Iron and Aluminum Oxide Clays


- Under conditions of extensive leaching by rainfall and long time intensive weathering of minerals in humid warm climates. Modified octahedral sheets with substitutions.
 - Which have lower solubility are called sesquioxides
 - Eg : Gibbsite Al (OH)3 → Oxisol and Ultisol
 Geothite (FeOOH) → Yellow Brown Color
 Hematite Fe2O3 → Red Color

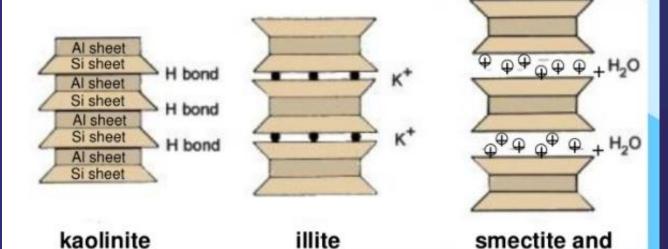
Allophane and Other Amorphous Minerals

- They are amorphous in nature
- These clays are common in soils forming from volcanic ash (Eg : Allophane). These clays have high anion exchange capacity or even high cation exchange capacity

Organic soil colloid: Humus

- Humus is amorphous, dark brown to black, nearly insoluble in water, but mostly soluble in dilute alkali solutions
- It is a temporary intermediate product left after considerable decomposition of plant and animal remains
- The negative charges of humus are associated with partially dissociated hydroxyl (-OH), carboxyl (-COOH), and Phenolic groups
- · Composed of 3 types: Fulvic Acid, Humic Acid, Humin

https://www.slideshare.net/syed_ismail


Sheets and Layers

1:1 non-expanding

2:1 non-expanding

2:1 expanding

vermiculite

THANK YOU

Stay Safe and Healthy everyone..!!